OPTIMIZATION OF BODY SHAPE AT SMALL REYNOLDS NUMBERS

A, A. Mironov UDC 532.516

The problem of the optimization of the shape of a body in a stream of viscous liquid
or gas was treated in [1-5]. The necessary conditions for a body to offer minimum
resistance to the flow of a viscous gas past it were derived in [1]. The neces~
sary optimality conditions when the motion of the fluid is described by the approxi-
mate Stokes equations were derived in [2]. The shape of a body of minimum resis-
tance was found numerically in [3] in the Stokes approximation. The optimality
conditions when the motion of the fluid is described by the Navier—Stokes equations
were derived in [4, 5}, and in [4] these conditions were extended to the case of

a fluid whose motion is described in the boundary-layer approximation. The neces-
sary optimality conditions when the motion of the fluid is described by the ap-
proximate Oseen equations were derived in [5] and an asymptotic analysis of the

behavior of the optimum shape near the critical points was performed for arbitrary
Reynolds numbers.

§1, The boundary-value problem for determining the shape of a body of minimum resist-
ance among bodies of a given volume formulated in [4, 5] can be reduced to the form

Av —yp = Re(vy)v, yv =0, (v)s = 0, (v)3 = vz,
Au — yg = Relvyv — (vy)ul, yu =0, (1.1

(ws =0, (u)g =vs, (QQ*)g = const,

where v and p are, respectively, the velocity and pressure fields in the stream of fluid; u
and q are certain auxiliary vector and scalar functions, S is the surface of the optimum
body; I is the outer boundary of the volume of fluid considered on which the velocity dis-
tribution vy 1s specified; @ = rot v, Q% = rot u. Suppose the surface S is described by the
-parametric equations xj = x;(r, t). Since the optimization problem is solved for the iso-
perimetric condition of constant volume, the functions xi(r, t) must satisfy the equation

[ i (r, tyas =1,
S

where the ny are the components of the outward normal to surface S.

The boundary-value problem (1.1) depends on the Reynolds number Re and, consequently,
the shape of the optimum body also depends on the Reynolds number. Suppose the surface So
of the body which is optimum in the Stokes approximation (Re = 0) is described by the equa-
tions x4 = xoi(r, t). We assume that the equation of the surface of the body Sp, which is
optimum for a nonzero Reynolds number can be written in the form

z; = z,(r, t, Re) = z,;(r, 1) -+ n;[Refy(r, t) + Re¥fo(r, £) +...1 (1.2)

The expansion (1.2) is possible when the surface So is smooth. If there are critical points
(branch points of the streamlines) on the surface So, the surface So in the neighborhood of
these points has the shape of a cone with a vertex angle of 120° [5]. If the surface deter-
mined by Eqs. (1.2) is a cone with a vertex angle of 120° it is shown in [5] that the equa-
tions, boundary conditions, and optimality conditions in the neighborhood of a critical
peint will be satisfied to an accuracy of O (Re“fi(re, to)), where ro and te are the values
of the parameters r and t corresponding to the critical point.

Suppose the functions v, p, u, and q satisfy the boundary-value problem (1.1) with the
boundary conditions specified on the surface SRe’ We expand these functions in powers of Re
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v =V, + Rev;, + Re?v, ..., p = p, + Rep, + Re’p, + .. .,
u=uy + Reu; 4- Re*un, + ..., ¢ = g, + Req, +- Re’q, + ... (1.3)

Substituting expansions {1.3) into the boundary~value problem (1.1), moving the boundary
conditions from surface SRe onto surface So, taking account of (1.2), and expanding the iso~

perimetric condition in powers of Re, we obtain a sequence of boundary-value problems for
determining the functions f;, vi, p;, uj, and q;. In the zero approximation we have

Avy—vpy =0, yvy =0, (vy)s, =0, (vo)z = Vs,
Auy—vg, =0, yu, =0, (u5)5, =0, (uy)s = vz, (1.4)

(290)s, = Cor | zoin,dS =1
8o

where the constant Co is determined from the isoperimetric condition. The boundary-value
problems for the functions vo, po and u,, qo are the same and therefore ue = Vo, qo = po +
const, and Q¢ = Q%. In thls case the boundary-value problem is equivalent to the problem
formulated in [2] for the Stokes approximation.

For the first approximation in Re problem (1.1) is reduced to the form

Avy, — yp; = (VoV)¥vg, YV = 0,

Aul o VQI = VoVVo — (VOV)V‘Oa Y4 = Ov (l 5)
(u)s = (v)z =0, (vi)s, = (uy)s, = — f %‘f;g,

9

(QOQI T Q-+, ',%,‘ 95)8 =2C, Sflds =0.

We reduce the number of unknown functions in problem (1.5) by adding the equations for v,
and u, and changing to the notation

1 1 v3 *
W, = ‘2‘("1 +w), = 7 (P1 + ¢ + ‘2'(2), ) = % (91 + 91)-
This gives
Aw; —ys, =0, yw; =0,
(W =0, (W)s,=—F avo» {(1.6)

. a

(9w01+ 716—119%) =Cy, y 48 =0.

\ Se .

So

It might be noted that since the constant C; is determined from the isoperimetric condition,
the functions w, and f; enter the boundary-value problem (1.6) homogeneously. Consequently,
problem (1.6) has the trivial solution w, = 0, f, = 0, and therefore u, = —v, and QF = -Q,.

In the second approximation in Re problem (1.1) takes the form

Avy, — ypy = (ViV)Ve T (vov)v1, YV, =0,
Auy — y@g =(voy)v; -+ vyv, — (ViV)¥e — V1V Ve YUy = 0,
(Va)z = (W)z = 0, (V)s, = (up)s, = — f-oot,

(Q Q '-r Q 99 el 291 f" 61) EZ\ == 207, \ f;,dS = O
S
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Here it has been taken into account that £, 2 0, v = 4, Vv; = —u;. We decrease the number
of equations and unknown functions by adding the equations for v, and u, and changing to the
notation

>

N 1 ¥
Wz=_2'(u2'i‘vz)’ Sp= E[p2+q2—v1v°]’ 0y = 2( 2+92)'

This gives
Aw, — ys, = (Voy) Vi + VvV, VW, =0,
(Wo)se = — f2 2, (Wa)z =0, (1.7)

(90% Q} 4,0 Qo) =C, 5 £,dS = 0.

§2. Suppose a uniform translational flow v, = const directed along the x axis 1s speci-
fied on the surface I. The surface I is symmetrgc with respect to the yz plane and the mid-
section of the bédy Se which is optimum in the Stokes approximation and passes through the
origin of coordinates. In this case the problem of determining the shape of S, admits a
solution which is symmetric with respect to the yz plane. We show that if the surface S,
is symmetric with respect to the yz plane, the function f, which is determined in solving
problem (1.7) will be an even function of the x coordinate and, consequently, a body which
1s optimum for nonzero Reynolds numbers will be symmetric with respect to the yz plane to
an accuracy of O(Re®). We introduce the notation

Vi = % Wiz (2, ¥, 2) + Vie (— 2, ¥, 2)], Vix =5 3 i (2, Y, 2) —vie(— 2, 3, 2)],

viy =5 Wiy (&, ¥ 2) —viy (— 2, ¥, D), iy = 5 Wy (2, 9, &)+ va(— 2, 3, D],

vy = -% i (z, ¥, 2) — vn(—-x,y,@],v;’::%{uh(x,y,z)4—vk(——z,y,@h (2.1)
2 %[p; =y, 8)—pi{—2, 9, 2], pi ——[p, = ¥ 2) +pi(—2 4 9

f‘i = 'z_[.fi(x’ t)+fi(—xv t)],f‘i—=§[fi(xi t)—fi(_x’ t)]

Here it is assumed that the surface 8, is determined by equations of the formy = y(x, t)
and z = z(x, t). After substituting Eqs. (2.1) into boundary-value problems (1.4) and (1.5)
we obtain vo~ = vot = 0. Substituting (2.1) into problem (1.7) and taking account of the

fact that v = vt = ( we obtain
AwF — vsi = (Vo v) v+ viyvi, wiz =0,

avy
(W2 )Z O (Wz )So fg_ Bno )

[@dof — (@) + 1 55 ()] =c7,
—_ _ ov
Awy —ysy = 0, VWy = 0, (Wz—)z =0, (Wz )s. = — fs —_—5!3 ,

[QF07 + 17 55 ()] =C7, .

where the functions with superscripts + and — are defined in analogy with the functions vi’",
v;, p;+, and pz; ¢t and C are constants determined from the isoperimetric condition. Since
fz 1s an odd function of x, the equations

jfz—dS—_—O, { 17dS=0.
Se g

must be satisfied. It might be noted that the boundary-value problem for the functions w2,
87, and £, is homogeneous and therefore has the trivial solution wz = 0, £,= 0. Thus, it
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has been shown that boundary-value problem (1.7) has a solution which is symmetric with re-
spect to the yz plane.

§3., In [4, 5] the function G to be minimized was chosen as the rate of dissipation of
energy over the whole volume of fluid under investigation

6vj

6(5)=| ﬁ (i;x—] a—zi)de.

i 4=t
This functional depends on the shape of the body and on the Reynolds number as on a parame-
ter. Suppose the surface of a certain body S 1s described by the equations x; = X5(r, t).

We consider a family of bodies Sy with a surface described by the equations xq = Xi(r, £) +
engf(r, t), where € is a parameter and f(r, t) is a fixed function. Then the values of the
functional on this family will be a function of two variables G(Sz, Re) = g(E, Re). We ex-
pand the function g(e, Re) in a Taylor series in the neighborhood of the point € = 0, Re =

0. We have

o8
de

g(e, Re) =g (0,0) ¢

. & _  Af,0% 9% 2 % \
—rReaRe—{—z(aa82 +28ReaﬁRe+Jh FRa] T e

Here all the derivatives are evaluated at the point € = 0, Re = 0. If Xi(r, t) = Xoy{r, t)

it follows from the optimality condition that 3g/9¢ = 0. 1In addition, since a body optimum
in the Stokes approximation is optimum also in the first approximation in the Reynolds num-~
ber, 3/3Re(3g/9€) = 0. Thus for variations of the surface S, the contribution to the func-
tienal 1s */,(e?3%g/de?). Now setting € = Re? and f(r, t) = f,(r, t), we find that the fam~
ily of surfaces Sy to an accuracy O(Re®) coincides with the family of optimum bodies and
therefore for small Reynolds numbers the contribution from optimization is of the order
0(e?) = 0 (Re*), and consequently a body which is optimum in the Stokes approximation can,
to a high degree of accuracy, be considered optimum also for small Reynolds numbers.

Let us consider two bodies S and S; = 8. We show that to an accuracy O(Re?) that body
S; has a resistance larger than that of body S. To do this we consider a one-parameter fam~
ily of bodies S(a) described by the equatioms Xy = xi(r, t, @) such that S(0) = §, S(1) = S,
and for any § > 0, S(¢ + 6)= S(a). On this family of bodies the functional will be a func-
tion of the single variable a: G[S(a)] = g(@). From the expression for the first variation
of the functional G [4, 5] it follows that

g v dua ___ oz,
T = ff(sn—?ﬂ)dsv f=migg
S(a)

Expanding the functions v and u in powers of Re we obtain

9 vy \2 dvy Buy |, duy 9 , 2
2= [ o[(Ge) + Ro(G 2o 4 B 2 a5 4 0 (R,
S(ct)

The functions u, and v, must satisfy the zero boundary conditions. Therefore, as is clear
from Eqs, (1.4) and (1.5), up, = V4, u; =—v;, and therefore

8 2

% _ f(%‘l%)odS—{—O(Re‘l).
S(a)

Since for & > 0, S(a+ 8) = S(a), then £ > 0, and therefore 3g/3a 2 0, and since g is a mono-
tonic function, g(0) £ g(l). Thus, it has been shown that any body containing the given one
with an accuracy O(Re®) has a resistance larger than that of the given body,

§4. 1In the above discussions it was essentially assumed that the outer surface I is
finite, since expansions (1.3) are valid only when Re.xjy << 1, In an infinite domain expan=-
sions of the form (1.3) must be joined with the outer Oseen expansion (Re = 0 for £ = Re x4
fixed) by replacing the boundary conditions on the surface I by appropriate joining condi-
tions. In this case, just as for a finite domain, it can be shown that the function £, = 0
satisfies the necessary optimality conditions. By changing to the variable €4 = Re-x4 and
assuming that a uniform translational flow v_ = const is specified at infinity we obtain a
system of equations and boundary conditions for the functions of the outer expansion
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A_EVE. —vep = Re(vgye)ve,  yeve =0,
Aguy — yig = Relug yeve — (veve)uel,  viug =0,
(Ve)o = (Ug)w = (1/Re)Ve

(4.1)

(the subscript{ denotes that the corresponding components of the vectors are evaluated in
the coordinates £4i). Assuming that Re is small we expand the functions v,, p, U, and q in
powers of Re. Since the boundary condition at infinity is of the order R&™', thé expansion
of the functions vg, Ps ug, and q will statt with terms of the order Re™?

: (4.2)

. 1 - 1
Vi= gz VETVEFA(), p=g "+ P o),
) .
e W T ugto(l), q_=—1§-e—q°+q‘+0(1)-

g =

Substituting expansion (4.2) into the equations and boundary conditions (4.1), equating
ceefficients of equdl powers of Re, and writing the condition for joining with the inner
expansion 1. 3)i we obtain a sequence of boundary-value problems for determining the func—
tions vg, p » UEs and q . It can be seen that the solution for the functions v2 and uf will
be vg = uj= v, For functions of the first approximation v!, p!, ul, and q' Eqs. (4.1) are
transforméd into the Oseen equations 2 &

Asvi— Vip' = (VoVe) Vi, Aguf — vig' = — (Vove) uf, Veui = vivi=0.

In order to join the functions v;, p s WS, and q! with the corresponding functions of expan-
sion (1.3) we join the functions w = 1/2(v} + u’), st = '/,(p* + q' + v2/2) with the func-
tions v, and s;. For wg and s! we have Stoies equation

AEWE - VES = 0’ VEWE = O,(W )00 =0. (4‘ 3)
The joining condition in this case has the form

limwi = lim w, (4.4)
Re>0 ~ Re=>0

where x; and £; are fixed.

It can be seen that the solution of problem (1.6) and (4.3) for joining condition (4.4)
is £, 20, w, = 0, and wg = 0, Thus, it 1s clear that for an infinite domain the necessary
optimality conditions are satisfied to an accuracy O(Re) on body Se, which is optimum for
zero Reynolds numbers. In the second approximation terms of the order v, = O(ln Re) arise
for v as a result of joining expansion (1.3) with the Oseen expansion (cf. e.g. [6]), and
therefore the function f; will alsoc be of the order f£f; = O0(ln Re). The same terms arise in
the functional G also, In this case by carrying through arguments similar to those in Sec.
3 it can be shown that the change in the functional as a result of optimization is of the
erder O (Re®),
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