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The problem of the optimization of the shape of a body in a stream of viscous liquid 
or gas was treated in [1-5]. The necessary conditions for a body to offer minimum 
resistance to the flow of a viscous gas past it were derived in [i]. The neces- 
sary optimality conditions when the motion of the fluid is described by the approxi- 
mate Stokes equations were derived in [2]. The shape of a body of minimum resis- 
tance was found numerically in [3] in the Stokes approximation. The optimality 
conditions when the motion of the fluid is described by the Navier-Stokes equations 
were derived in [4, 5], and in [4] these conditions were extended to the case of 
a fluid whose motion is described in the boundary-layer approximation. The neces- 
sary optimality conditions when the motion of the fluid is described by the ap- 
proximate Oseen equations were derived in [5] and an asymptotic analysis of the 
behavior of the optimum shape near the critical points was performed for arbitrary 
Reynolds numbers. 

w 
ance among bodies of a given volume formulated in [4, 5] can be reduced to the form 

A v - - v p =  Re(vv)v, V v = 0 ,  (V)s = 0 ,  (v)~ = v z ,  

Au - -  Vq = Re[vvv  - -  (vv)u],  VU = O, 

(U)s = 0, (u)~ = vz , ([~fl*)s = eonst, 

The boundary-value problem for determining the shape of a body of minimum resist- 

(1.1) 

where v and p are, respectively, the velocity and pressure fields in the stream of fluid; u 
and q are certain auxiliary vector and scalar functions, S is the surface of the optimum 
body; E is the outer boundary of the volume of fluid considered on which the velocity dis- 
tribution v~ is specified; ~ = rot v, ~* = rot u. Suppose the surface S is described by the 
parametric equations x i = xi(r , t). Since the optimization problem is solved for the iso- 
perimetric condition of constant volume, the functions xi(r , t) must satisfy the equation 

. f n i x i ( r , t ) d S  = t, 
8 

where  t h e  n I a r e  t h e  components  o f  t h e  ou tward  no rma l  t o  s u r f a c e  S. 

The b o u n d a r y - v a l u e  p r o b l e m  ( 1 . 1 )  depends  on t h e  Reyno lds  number Re and ,  c o n s e q u e n t l y ,  
t h e  shape  o f  t he  optimum body a l s o  depends  on t h e  Reyno lds  number.  Suppose the  s u r f a c e  So 
o f  t h e  body which  i s  optimum in  t h e  S t o k e s  a p p r o x i m a t i o n  (Re = 0) i s  d e s c r i b e d  by t h e  e q u a -  
t i o n s  x i = x o i ( r ,  t ) .  We assume t h a t  t h e  e q u a t i o n  o f  the  s u r f a c e  o f  t he  body SRe which  i s  
optimum f o r  a n o n z e r o  Reyno lds  number can  be w r i t t e n  i n  t h e  form 

x~ = zi(r, t, Re) = xo~(r, t) + ni[Re/l(r, t) + Re2/2~, t) + . . . 1 .  ( 1 . 2 )  

The e x p a n s i o n  ( 1 . 2 )  i s  p o s s i b l e  when t h e  s u r f a c e  So i s  smooth .  I f  t h e r e  a r e  c r i t i c a l  p o i n t s  
( b r anch  p o i n t s  o f  t h e  s t r e a m l i n e s )  on t he  s u r f a c e  So, t h e  s u r f a c e  So i n  t h e  n e i g h b o r h o o d  o f  
t h e s e  p o i n t s  has  t h e  shape  o f  a cone  w i t h  a v e r t e x  a n g l e  o f  1201 [ 5 ] .  I f  t he  s u r f a c e  d e t e r -  
mined by Eqs.  ( 1 . 2 )  i s  a cone w i t h  a v e r t e x  a n g l e  o f  120" i t  i s  shown in  [5] t h a t  t he  e q u a -  
t i o n s ,  b o u n d a r y  c o n d i t i o n s ,  and o p t i m a l i t y  c o n d i t i o n s  i n  t h e  n e i g h b o r h o o d  o f  a c r i t i c a l  
point will be satisfied to an accuracy of O (Re~f~(ro, to)), where ro and to are the values 
of the parameters r and t corresponding to the critical point. 

Suppose the functions v, p, u, and q satisfy the boundary-value problem (I.I) with the 
boundary conditions specified on the surface SRe. We expand these functions in powers of Re 
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V = Vo -{- Revl -~- Re2v~ + . . . .  P = Po + R e p ,  + Re2p2 + . . . .  

u = U o  + Reul + Re'u2 + . . . ,  q = qo + Req: +Re2q~ + . . .  ( 1 , 3 )  

Substituting expansions (1.3) into the boundary-value problem (I.I), moving the boundary 
conditions from surface SRe onto surface So, taking account of (1.2), and expanding the iso- 

perimetric condition in powers of Re, we obtain a sequence of boundary-value problems for 
determining the functions fi' vi' Pi, ui, and qi" In the zero approximation we have 

Avo - -  VPo = 0, VV o = 0, (Vo)s o = 0, (Vo)~ = vx,  

AUo - -  V %  = 0 ,  V U o  = 0 ,  ( U o ) s  . = 0 ,  ( U o ) z  = v x ,  ( 1 . 4 )  

= C o  .! = 1 
So 

w h e r e  t h e  c o n s t a n t  Co i s  d e t e r m i n e d  f r o m  t h e  i s o p e r i m e t r i c  c o n d i t i o n .  The b o U n d a r y - v a l u e  
problems for the functions vo, Po and u| qr are the same and therefore uo = re, q| = po + 
const, and flo = ~. In this case the boundary-value problem is equivalent to the problem 
formulated in [2] for the Stokes approximation. 

For the first approximation in Re problem (i.I) is reduced to the form 

A v ,  - -  VP ,  = (voV)Vo, VV, = 0, 

Au l  - -  v q ,  = v o V V o  - -  (voV)Vo, VUl = 0, 
0Vo 

(U~)E = ( V i ) x  = 0 ,  (V , )So  = ( U 0 s  o = - - / 1  On ' 

O ~  + ~ I Q ~  / so  

( 1 . 5 )  

We reduce the number of unknown functions in problem (1.5) by adding the equations for v, 
and u, and changing to the notation 

w , = ~ - ( v , + u l ) ,  s , = y  p , + q , +  , o , = T  

This gives 

Aw, - -  VS, = 0, VW, = 0, 

0Vo 
(Wl) x = 0 ,  (Wl)So  = - - / 1  On ' 

( ~ f Q~O01 + ]1 --~ Q = C1, / i r i S  = O. 
s, 

so 

(1.6) 

It might be noted that since the constant C, is determined from the isoperimetric condition, 
the functions w, and f, enter the boundary-value problem (1.6) homogeneously. Consequently, 
problem (1.6) has the trivial solution w, E 0, fl E 0, and therefore u, = -v, and fl~ =-~1. 

In the second approximation in Re problem (i.i) takes the form 

Av2 - -  VP2 = (vzv)vo + (vov)v , ,  VV.o = 0, 

Au2 - -  v q :  =(VoV)V, + V o W ,  - -  ( v , v ) v o  - -  v:VVo, VU2 = 0, 

0V 0 
( v o ) z  = (uo.)x = O, (v . , ) so  = (u.,)So = - / ~ .  On ' 

* ~ 0 02\ i ~ (~2{~ O \  -~ non  2 - 2D: + ]o ~F  "'(')so := 2C2, j f2dS = O. 

St 
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Here it has been taken into account that f, E 0, vo = uo, v, =-u,. We decrease the number 
of equations and unknown functions by adding the equations for vu and ua and changing to the 
notation 

l 1 1 (~2 + Q2). w 2 = T ( u ~  + v ~ ) ,  s~ = ~ [ p 2  + q2 - -  v~v0], o~ = 

This gives 

Aw~ - -  VS2 = (vov)  vl  § v o w s ,  VW2 = O, 

OVo (w2)s. = - / 2  - ~ ,  (w~)~ = O, 

o 2 = S/~dS O. ( f / o O ~ -  9~ §  f~O)s ' C2, = 

,_q, 

(1.7) 

w Suppose a uniform translational flow v_ = const directed along the x axis is speci- 
fied on the surface E. The surface E is symmetric with respect to the yz plane and the mid- 
section of the body S, which is optimum in the Stokes approxlmatlonand passes through the 
origin of coordinates. In this case the problem of determining the shape of So admits a 
solution which is sy~etrlc with respect to the yz plane. We show that if the surface So 
is symmetric with respect to the yz plane, the function f2 which is determined in solving 
problem (1.7) will be an even function of the x coordinate and, consequently, a body which 
is optimum for nonzero Reynolds numbers will be symmetric with respect to the yz plane to 
an accuracy of O(Rea). We introduce the notation 

v + = ~- Ivan: (z, y, z) + v ~  ( - -  z,  y, z)], v~: = - f  [vi~ (z, y, z) - -v i~( - -  x, y, z)l, 

+ t t 
vlv = "i" [vi~, (z, y, z) - vi~ ( -  z, y, z)], v ~  = ~- [vi~, (z, y, z ) +  v~, ,(-  x, y, z)l, 

v . + _  t t ,~ - ~ [v~ (z, y, z) - -  v~ ( - -  x, y, z)l, vi7 = - f  [v~ (x, y, z) + v~ ( - -  x, y, z)l, 

t t p+ = ~ [p~ (z, y, z) - p~ ( - -  x, y, z)l, p F  = -~- [p~ (z, y, z) + p~ ( - -  x, y, z)l, 

t t ) ] , / 7 - = t [ / ,  (x, t) It ( - -  x, t)]. I + = ~ [fi (z, t) + I~ ( - z ,  

(2.1) 

Here it is assumed that the surface S, is determined by equations of the form y �9 y(x, t) 
and z = z(x, t). After substituting Eqs. (2.1) into boundary-value problems (1.4) and (1.5) 
we obtain vo- m vo+ = 0. Substituting (2.1) into problem (1.7) and taking account of the 
fact that v~ - v + " 0 we obtain 

Aw~+_ w~+ = ( * ~ v ) ~ T +  ~o+wT, ~ = o, 
ov~ 

( w + ) z = O '  (W+)s. - -  - -  /+  On' 

ao , ~  - .  (a-v) ~ + f f  ~ (Qo = c~, 
So 

A,~7 - v~.;- o, v w ~  = o, (w.;-h = o, (w,y)~. = - 5- ~176 ~ On ' 

0 + 2 LI + I; jls. = cr 

where the functions with superscripts + and -- are defined in analogy with the functions vi +, 
Vl, pi i, and p[; C+2 and C~ are constants determined from the isoperlmetrlc condition. Since 

f~ is an odd function of x, the equations 

S l -ds = o, 1 -ds = o. 
8, So 

must be satisfied. It might be noted that the boundary-value problem for the functions w~, 
sT, and f~ is homogeneous and therefore has the trivial solutlon w~ ~ O, f'2~ O. Thus, it 
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ha~ been shown that boundary-value problem (1.7) has a solution which is symmetric with re- 
spect to the yz plane. 

w In [4, 5] the function G to be minimized was chosen as the rate of dissipation of 
energy ove~ the whole volume of fluid under investigation 

This functional depends on the shape of the body and on the Reynolds number as on a parame- 
ter. Suppose the surface of a certain body S is described by the equations x i = Xi(r , t). 
We consider a family of bodies S E with a surface described by the equations x i = Xi(r, t) + 
enif(r, t), where ~ is a parameter and f(r, t) is a fixed function. Then the values of the 
functional on this family will be a function of two variables G(SE, Re) = g(e, Re). We ex- 
pand the function g(~, Re) in a Taylor series in the neighborhood of the point e = O, Re = 
0. We have 

g(s, Re) = g (0, 0) q- s -gU q- Re ~ q- e~ 0-D- q- 2s Re tie ~ q- 

Here all the derivatives are evaluated at the point c = 0, Re = 0. If Xi(r , t) = xoi(r , t) 

it follows from the optimality condition that ~g/~E = 0. In addition, since a body optimum 
in the Stokes approximation is optimum also in the first approximation in the Reynolds num- 
ber, ~/~Re(~g/~) = 0. Thus for variations of the surface So the contribution to the func- 
tional is I/a(c2~2g/~ca). Now setting ~ = Re 2 and f(r, t) = f2(r, t), we find that the fam- 
ily of surfaces SE to an accuracy O(Re s) coincides with the family of optimum bodies and 
therefore for small Reynolds numbers the contribution from optimization is of the order 
O(c 2) : 0 (Re4), and consequently a body which is optimum in the Stokes approximation can, 
to a high degree of accuracy, be considered optimum also for small Reynolds numbers. 

Let us consider two bodies S and Sx~ S. We show that to an accuracy O(Re 2) that body 
S~ has a resistance larger than that of body S. To do this we consider a one-parameter fam- 
ily of bodies S(=) described by the equations x i = xi(r, t, =) such that S(O) = S, S(1) = S~ 
and for any ~ > O, S(~ + 5) ~ S(~). On this family of bodies the functional will be a func- 
tion of the single variable ~: G[S(=)] = g(a). From the expression for the first variation 
of the functional G [4, 5] it follows that 

og ~ (Or Ot~,ld S Ox~ 
"~-d= I -yf-~-ff ] , / = h i  0~"" 

S(=) 
Expanding the functions v and u in powers of Re we obtain 

a--~= f[\--~-] +Re  a. ~ a~ - :  

~u) 

The functions u, and v, must satisfy the zero boundary conditions. Therefore, as is clear 
from Eqs, (1.4) and (1.5), uo = v,, ux =-vl, and therefore 

0g 

S(a) 

S i n c e  ~or  d > 0,  S ( u +  ~ ) ~  S ( a ) ,  t h e n  f ~ 0,  and t h e r e f o r e  3g/Oa ~ O, and s i n c e  g i s  a mono- 
t o n i c  f u n c t i o n ,  g (0)  ~ g ( 1 ) .  Thus ,  i t  has  b een  shown t h a t  any body c o n t a i n i n g  t h e  g i v e n  one 
w i t h  an  a c c u r a c y  0(Re 2) ha s  a r e s i s t a n c e  l a r g e r  t h a n  t h a t  o f  t h e  g i v e n  body ,  

w In  t h e  above  d i s c u s s i o n s  i t  was e s s e n t i a l l y  assumed t h a t  t h e  o u t e r  s u r f a c e  ~ i s  
finite, since expansions (l.3) are valid only when Re.x i << i. In an infinite domain expan- 
sions of the form (1.3) must be joined with the outer Oseen expansion <Re ~ 0 for ~i = Re'xi 
fixed) by replacing the boundary conditions on the surface ~ by appropriate joining condi- 
tions. In this cas~, just as for a finite domain, it can be shown that the function fx E 0 
satisfies the necessary optimality conditions. By changing to the variable ~i = Re'xi and 
assuming that a uniform translational flow v~ = const is specified at infinity we obtain a 
system of equations and boundary conditions for the functions of the outer expansion 
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A~vl - - V ~ P  = Re(v~v~)v~, VCvr = O, 
A~ug - -  v~q = Be[ui VCV~ - -  (vgvOu~], VCU~ = O, 

(vO~o = (u~)~ = (l/Re)v~ 

( 4 . 1 )  

(the subscript ~ denotes that the corresponding components of the vectors are evaluate6 in 
the coordinates ~i)" Assuming that Re is small we expand the functions v~, p, u~, and q in 
powers of Re. Since the boundary condition at infinity is Of the order R~'*, the expansion 
of the ' functions v~, p, u~, and q will start with terms of the order Re-* 

t pO p~ o(1), v~=- -~ ,4+v~+o : (~ ) ,  p = - ~  + + 
(4,2) 

t 0 t o q~ o 0 ) .  -~=-~u~+u{+00), q --~q + + 

Substituting expansion (4.2) into the equations and boundary conditions (4.1), equating 
coefficients of equ~l powers of Re, and writing the condition for Joining with the inner 
expansion (1.3), we obtain a sequence of boundary-value problems for determining the func- 
tions v~, pi, u i, and qi It can be seen that the solution for the functions v~ and u~ will 
be v~ = ur = v �9 For functions of the first approximation v., p , u., and q Eqs. (4.1) are 
transformed into the Oseen equations 

A~v{ . . . . .  v~ /  (~vOvL A~u{ v~q' (v~w)-{, wu'~ = v~{ = o. 

In order to join the functions v#, pZ, up, and q* with the corresponding functions of expan- 
sion (1.3) we Join the f~nctlons~w~ = */~(v~ + u~), s* = */a(p * § q* + v=/2) with the func- 
tlons u and s,. For w~ and s t we~have Sto~es e~uation = 

A~w{ - w ~ '  = o,  v~w{ = O , ( w %  = o. ( 4 , 3 )  

The joining condition in this case has the form 

limw~ = lim w t (4.4) 
Be~0 Re--'>O 

where x i and ~i are fixed. 

It can he seen that the solution of problem (1.6) and (4.3) for joining condition (4.4) 
is f~ E 0, w, E 0, and w~ E 0. Thus, it is clear that for an infinite domain the necessary 
optimality conditions are satisfied to an accuracy o<Re) on body Se, which is optimum for 
zero Reynolds numbers. In the second approximation terms of the order v$ = O(in Re) arise 
for V as a result of joining expansion (1-.3) with the Oseen expansion (cf, e, g. [6]), and 
therefore the function fa will also be of the order f= = O(in Re). The same terms arise in 
the functional G also, In this case by carrying through arguments similar to those in Sec, 
3 it can be shown that the change in the functional as a result of optimization is of the 
erder O(Rea). 

i. 
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